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A LOCAL COORDINATE APPROACH IN THE MLPG METHOD FOR BEAM

PROBLEMS

I.S. Raju and D.R. Phillips*

NASA Langley Research Center

Hampton, VA

ABSTRACT

System matrices for Euler-Bernoulli beam problems for the meshless local

Petrov-Galerkin (MLPG) method deteriorate as the number of nodes in the beam models

are consistently increased. The reason for this behavior is explained. To overcome this

difficulty and improve the accuracy of the solutions, a local coordinate approach for the

evaluation of the generalized moving least squares shape functions and their derivatives

is proposed. The proposed approach retains the accuracy of the MLPG methods.

INTRODUCTION

Meshless methods are increasingly being viewed as an alternative to the finite

element method [1-3]. Recently, a meshless local Petrov-Galerkin (MLPG) method has

been presented for C O and C 1 problems [3,4]. In these methods, moving least squares

(MLS) interpolants [1] are used for C o problems and generalized MLS interpolants are

used for C 1 problems [4]. References 3 and 4 showed excellent performance of the

MLPG method for potential and elasticity problems and a good performance for beam

problems.

*Joint Institute for Advancement of Flight Sciences - George Washington University,
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When all the chosen parameters in the MLPG method are held constant and the

number of nodes in the models are consistently increased, the error norms do not

decrease; rather they show increases compared to coarser idealizations. The reasons for

this behavior are studied. A local coordinate approach to the MLS interpolation is

proposed. The proposed local coordinate approach is implemented and evaluated by

applying it to three simple test cases.

BEHAVIOR OF THE MLPG METHOD WITH MESH REFINEMENT

The notation of reference 4 is used in this note for brevity and convenience in

presentation. The MLPG equations are

K (n°de)d K IbdY)d -- f(n°de) -- f}bdy) 0i -+ =

where

{ ^2{d}= /)1 _1, bl _2,
_ oo°

are the fictitious nodal values of deflections u and slopes 07 and the matrices in Eq. (1)

are defined as in Eq. 35-36(g) of reference 4.

The MLPG equations are derived using a weighted residual weak form of the

governing equations. The trial functions used for the beam problems are derived using

the generalized MLS interpolation [4] as

N

u(x) = 2_"_,} "_(x) +bi_,}O_(x)
i=l

where

4q/ u) (x) = _, pj (x) ji
j=l

m -1 T
qz_0)(x)= ._tp.(x)[A P_w]./i

j=l J
with

[A]= pTwp + PfwP x

(1)

(2)

(3)

(4)

(5)
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In Eq. (5) P is an (n,m) matrix and w is an (n,n) matrix defined as

[P]=[p(xl) p(x2).., p(Xn)] T (6)

[Wl(_) ]

W2 (-_)
W _ °°

w. (_)

(7)

whereY=x-x i ,and

T [- 2 m-1

p (x)=L1, x, x .... x

pT (x) - dpTz-[o, 1, 2._9 .. •

(8)

with (m-l) as the order of the basis function p(x) used in the MLS approximation. The

weight functions w i (2) chosen are

! 2 21Wi(Y)= 1-d i /R i
if d i <_ R i

if d i > R i

(9a)

and

tlwi(2)= -6(dil2 +8(di/3-3 if O_diGR i
t R,.) tR,.)

if d i >_ R i

(9b)

where di = IIx -xi II. The test function v_(x) in the MLPG weak form is chosen as

V i (X) = 1- d i if d i < R o

if d i > R o
(lO)

Note that the lengths Ri and Ro in Eqs. (9) and (10) are user defined in the MLPG method.



In thecurrentimplementationabeamof length41is considered,asthechoiceof

unit beamlength1 would mask numerical errors. Six models with 5, 9, 17, 33, 65, and

129 nodes uniformly distributed along the length of the beam are considered. The model

with 17 nodes is presented in Figure 1. The distance between the nodes (A/l) in these

models are 1.0, 0.5, 0.25, 0.125, 0.0625, and 0.03125 for the 5-, 9-, 17-, 33-, 65-, and

129-node models, respectively. The (Ro / l) in the test functions (Eq. 10) in each of these

six models is different and is chosen equal to (2A). The (Ri / l) in Eq. (9) is chosen to be

(Ri / 1 = 3.5) for the 5-, 9-, and 17-node models and (Ri / 1 = 16A) for the 33-, 65-, and

129-node models. Two types of basis functions, quadratic basis (1, x, x 2) and cubic basis

(1, x, x 2, S), are used. System matrices in Eq. (1) are developed with these parameters.

The resulting system equations must be able to reproduce the constant, linear, and

quadratic terms exactly when the quadratic basis is used, and additionally, the cubic term

when the cubic basis is used. To evaluate the system matrices developed for the six

models, two rigid body conditions and a constant-curvature condition were considered.

These can be written as

du
u(x) = c 0, 0 - - 0 ; Rigid body translation,

dx

u(x) = ClX, 0 = c1 ; Rigid body rotation, and (11)

2
u(x) = c2x , 0 = 2c2x ; Constant-curvature,

where co, cl, and c2 are arbitrary constants. The third condition in Eq. (11) corresponds to

d2u
the problem of a cantilever beam with a moment, M = E1 -- = 2c 2 , applied at x = 41.

dx 2

The problems described by Eq. (11) are simple test problems and should be reproduced

exactly by the MLPG when quadratic or higher bases are used.
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The {d} vectorsthatcorrespondto eachof theconditionsin Eq. (11) (andin the

absenceof anyotherloading)whenusedin Eq. (1) shouldresultin anull right-hand

vectorif theKi(n°aeJis evaluatedexactly. In general,theproductresultsin aresidual

{r }vectoras

Kln°de){d}= {r}

Eachof thecomponentsof thevector{r } isnearlyequalto machinezeroif Ki(n°de)is

evaluatedaccurately.To quantifytheresidual,anerrornormof {r } is computedas

]1 Ncl 2

el =,/72rk
V Iv d k=l

(12)

(13)

where rk is the k th component of the vector {r} in Eq. (12) and Na is the degrees of

freedom in the model.

Table 1: Error norm [[E[[1 of the residuals for six models and for two basis functions

hi=C3 N2Number of hi=el bl=C2X

nodes in Quadratic Cubic Quadratic Cubic Quadratic Cubic

the model Basis Basis Basis Basis Basis Basis

5* 0.5040e-14 0.1278e-12 0.2099e-14 0.4547e-13 0.5733e-14 0.9196e-13

9* 0.7515e-13 0.1496e-ll 0.2362e-13 0.5514e-12 0.3321e-13 0.9747e-12

17" 0.2774e-10 0.8211e-10 0.1109e-10 0.3067e-10 0.1582e-10 0.5352e-10

33 0.3609e-9 0.1062e-5 0.1266e-9 0.4479e-6 0.2587e-10 0.9057e-6

65 0.1691e-6 0.1435e-2 0.7735e-7 0.5855e-3 0.1726e-6 0.1193e-2

129 0.1796e-4 0.559%+0 0.8154e-5 0.2269e+0 0.1794e-4 0.4154e+0

*Ri/1=3.5

Table 1 presents the IIEII1for the three conditions in Eq. (11) when the weight

function in Eq. (9b) is used. (Similar results are obtained when weight function (9a) is

used and hence these results are not presented here.) As seen from the table, the IIEII1

deteriorates with model refinement and for higher order basis. Closer examination of the

residuals for each of the six models showed that the residuals were of machine accuracy

for nodes near the origin while the residuals were largest at nodes farthest from the
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origin. This observationwasconfirmedby runningdifferentcaseswith theoriginat

differentlocationsalongthelengthof thebeam.Also, theresidualswerelargestfor the

modelswith the largestnumberof nodes.

Closerscrutinyof computationsshowedthatthenumericalvaluesof theshape

functionsfor nodesthataresystematicallylocatedaboutthecenterof thebeam(for

example,nodes3 and15,2 and16,and1 and17 in the 17-nodemodelof Figure 1)are

notexactlyidenticalasexpected.Thesedifferencesincreasedwith modelrefinementand

whenahigherbasiswasused.Theerrornorm in Table1canbeimprovedby using

higherprecisioncomputationsor inversionroutines. However,amuchsimpler

alternativeto improvetheaccuracyis presentedbelow.

LOCAL COORDINATE APPROACH

In the MLS interpolation, the basis functions are in terms of the global coordinate

x. The [A] matrix thus formed using this basis is generally of the form (see Eq. 16, ref. 4)

E I= +
k=l

where Y = x- Xj and M are the number of nodes in the domain of definition of node j for

which the [A] matrix is being computed. (For convenience in presentation, the [A]

matrices thus formed will be referred to as the global method.) As the order of the

polynomial basis increases the conditioning of the [A] matrix deteriorates. For example,

the matrix [A] will have terms like 1, x 2, x 4, x 6 on the diagonal for a cubic basis function.

The [A] matrices for nodes near the origin and the [A] matrices for nodes farthest from

the origin will be different. The conditioning is worse for [A] matrices for nodes farthest

from the origin. This explains the differences in the error norms observed in Table 1.



Thesituationcanbeeasilyrectified if theMLS approximationis definednot in termsof a

globalbasis,but ratherin termsof a localbasis.Figure2 showstwo identicalshape

functions,onecenteredat nodej, and the other centered at node e. The global

approximation for

u(x) = pT (x)a(x) (15)

• m-1
= a 1 +a2x+a3 x2 +...+ arnx

can be rewritten in the neighborhood of node j, recognizing that x = xj + _ where _ is a

local coordinate measured from node j, as

u(x) :a I +a2(x j +_)+a3(x j +_:) 2+...

= al +a2xj +a3xj +(a2 + 203x j +...)_ +(03 +...)_2

(16)

=b I +b2_ +b3_ 2 +...

where hi, i=1 ..... m-1 are the new undetermined coefficients in the MLS approximation.

(A similar local coordinate transformation can be affected for node e in Figure 2 as

x = xe + _.) The [A] matrix then is computed in a similar manner as in Eq. (14) but with

pT(_:)=I1, _:, _:2 .... _:m-i 1

and pW(_:):[0, 1, 2_:, 3_ :2 .... (m--1)_ ('-2)] (17)

d d

as dr,():_()

LOCAL COORDINATE APPROACH RESULTS

The local coordinate approach is implemented in the evaluation of the shape

functions and their derivatives for all the nodes in the six MLPG models of the beam.

Table 2 compares the condition numbers of the [A] matrices at various locations on the
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beamusingglobalandlocalcoordinatemethods.Theconditionnumbersareevaluated

usingroutinesavailablein NAPACK andtheprocedureoutlinedin references5 and6.

Whentheglobalcoordinatemethodis used,theconditionnumbersof the [A] matrices

for nodesfarthestfrom theoriginaremuchlarger(suggestingpoorconditioning)thanthe

nodesclosestto theorigin. Theconditioningnumbersof the [A] matricesvastly improve

whenthelocal coordinatemethodis used,clearlydemonstratingthe advantagesof the

localcoordinatemethod.

Table 2: Comparison of the condition numbers of the [A] matrices at various

locations on the beam using global and local coordinate methods

Location

on the

beam (x/41)

0.0

Number of nodes in the model

5* 9* 17" 33 65 129

0.631e+3 0.189e+4

0.5 0.231e+5 0.131e+8

1.0 0.914e+6 0.365e+11

Global Method Conditioning Number
0.106e+4 0.930e+3 0.271e+3 0.267e+3

0.268e+5 0.272e+5 0.785e+5 0.904e+6

0.771e+6 0.127e+7 0.422e+8 0.153e+10

0.0 0.634e+3

Local

0.106e+4 0.189e+4
Method Conditioning Number
0.930e+3 0.271e+3 0.267e+3

0.411e+2 0.111e+2 0.153e+2

0.930e+3 0.271e+3 0.267e+3

0.5 0.478e+3 0.496e+2 0.141e+3

1.0 0.632e+3 0.106e+4 0.189e+4

*Ri/1=3.5

Table 3: Error norm IIEII1o¢ the residuals computed with the local coordinate

approach

Number of

nodes in

the model

H=C1

Quadratic
Basis

Cubic

Basis

5* 0.1173e-14 0.3500e-13

9* 0.2521e-13 0.4900e-13

17" 0.1392e-12 0.2169e-12

33 0.4389e-12 0.1390e-ll

65 0.4196e-ll 0.3890e-ll

129 0.4029e-10 0.2778e-10

*Ri/1=3.5

H=C3 X2H=C2 X

Quadraic Cubic Quadraic Cubic
Basis Basis Basis Basis

0.2342e-15 0.1201e-14 0.3174e-14 0.3853e-13

0.8357e-14 0.1699e-13 0.3659e-13 0.4146e-13

0.4764e-13 0.1680e-12 0.2126e-12 0.8124e-12

0.1876e-12 0.5060e-12 0.4084e-12 0.2183e-ll

0.1142e-ll 0.1879e-ll 0.2548e-ll 0.5930e-ll

0.1240e-10 0.8191e-ll 0.2400e-10 0.2166e-10

The error norms shown in Table 1 are recomputed and the results are presented in

Table 3. As expected, all models and the quadratic and cubic basis functions produced



theerrornormscloseto machineaccuracy,suggestingthatthe localcoordinateapproach

producesaccurateresultscomparedto theglobalcoordinateapproach.

COMPUTATIONAL ADVANTAGE OF THE LOCAL COORDINATE APPROACH

In the conventional MLPG implementation, the [A] matrix is calculated and

inverted at every node in the model. When using the local coordinate methodology with

uniform nodal spacing, the shape functions are exactly identical for nodes whose Ri

places the entire shape function in the interior of the domain of the problem. Hence, for

those nodes the [A] matrices are identical. As such, considerable reduction in

computational effort and cost can be achieved by the proposed local coordinate approach

thus eliminating a perceived disadvantage of the MLPG method.

CONCLUDING REMARKS

The MLPG method for beam problems (C 1 problems) showed that the solutions

deteriorated as the number of nodes in the models were progressively increased. Closer

examination revealed that the moving least squares (MLS) shape function calculations

involved the computation of the [A] matrix and that this matrix became ill conditioned

for nodes farthest from the origin. To overcome this difficulty a local coordinate

approach for the MLS basis functions was proposed. The proposed approach restored the

accuracy of the MLPG method for beam problems.
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